The remainder contains examples of specifications that can be used to detail technical requirements for a digital transmission facility for a multiple station group. The examples cover a studio-to-transmitter (STL) network, digital television transmitter, design, erection, and installation services. The material is intended to serve as the technical content of an RFI or RFP and acceptance of deliverables.
STL Network
The STL network will provide and all transmission facilities required to transport content, monitor and control transmitters, and support voice and data communications, site security, and network management functions. The network must be designed to meet very high reliability operations with less than a 1-minute outage per month, cumulative outage of less than 10 minutes per year. Each site must have at least two physical routes between the central master control and each transmitter site. If one path experiences an outage, the network will be required to sense the outage and restore service via the alternate route without human intervention. Alternate route facilities between the central site and each transmitter site will be designated Main and Backup. Both paths will be subject to monitoring and alarm at all times. The normal mode of operation is Main path on air, and Backup path in standby. If the Main path experiences an outage, the network will be required to switch to Standby signal automatically without human intervention. If the Standby path experiences an outage, it will cause an alarm to be initiated and logged. Service restoration will be of the highest priority, and at least equal to any service restoration priority provided to other customers in the class covering public convenience and safety.
Service Provider Technical Qualifications
The service provider shall demonstrate competence through design level expertise with classical and contemporary network technology, systems, facilities, services, and network operations. The successful service provider will own more than 75% of all facilities that the network traverses. For those portions it does not own, it will be required to demonstrate satisfactory contractual business relationships with the owner.
The successful service provider will incorporate network management systems that can be accessed by the buyer for purposes of lodging requests for investigation of alarms and outages. Preference will favor those service providers capable of demonstrating current capabilities to accept requests for investigation of outages or service impairment whereby the user enters information into a terminal or other device with an Internet browser-type interface. It will be an absolute requirement that the successful service provider acknowledge a request within 1 minute of lodging by an automatically generated response, and confirm within certain time frames, depending on priority included in the request.
Responses to this request will be evaluated based on cost and technical trade-offs across performance, robustness, and reliability. Presentation of facts and figures is left to the service provider; however, greater consideration and eventual award will be given to the proposal with meaningful, detailed design characteristics that are related directly to service cost. Highly summarized, the most credible proposal containing best performance, robustness, and reliability constrained by most favorable start-up and long-term cost is most likely to be accepted. The buyer reserves full and final judgment on all matters of the selection and award process and will not under any circumstances pay for cost estimates, proposal preparation, or a similar effort, material, or services except by formal agreement to do so in advance of a formal purchase order.
Due diligence will follow initial selection. Due diligence includes physical examination of a cross-section or example of network elements making up the service provider’s core network. Terminals and central offices serving all sites will be examined closely and must include face-to-face meetings with technicians, supervisors, and managers who will be supporting the network. The successful supplier will exhibit confidence in its ability to isolate and resolve issues and concerns of all levels of severity in a competent, logical, and straightforward manner. An examination of power systems, heating, ventilation, air handling, and safety systems and procedures will be conducted.
Network Topology
Network topology will cover sites 1 through N. Service providers initial responses should be based on eight sites as depicted in Figure 1. After examination of the initial proposals and selection of two or three finalists, additional sites may be added for revised technical proposals and pricing.
Figure 1: STL Network Topology
Linking in the final network design will be a mix of round robin and point-to-point links between sites. Fully meshed network design is not technically prohibited; however, cost of such networks is likely not attractive. Furthermore, network management and utilization is unattractive because of operational complexity.
Service providers are requested to study the topology and capacity requirements of the STL network and propose at least two approaches. Each approach should be presented with a spreadsheet containing link numbers, site designation capacity, and pricing for each link. Specific routing details for each link are required to show active and passive network elements on each alternate route between sites. An analysis showing minimum and maximum time to repair a single failure of each active and passive element in each path or route will be included on a separate spreadsheet in the same file as linking and pricing.
Network Interface and Capacity
For the initial 3-year period, core network interface and capacity needs include diverse STS1 interface (51.8 Mbs) at each transmitter site and diverse OC12/STM4 (622 Mbs) interface at the central site. The service provider will include an estimate of the time, cost, and required notice for making additional capacity available in diverse STS1 increments.
Service interface will be DVB-ASI across a BNC connector on either side of a bulkhead or patch panel of the service provider’s choosing. In parallel with each service interface, the service provider will include an Ethernet interface to the network management system to facilitate voice and data communications required to support network management. The service provider may provide access to the public network at their option. If such is included, the service provider must demonstrate adequate and satisfactory firewall capabilities between the network interface point and the outside world.
The service between the central master control and each transmitter site will consist of a minimum of four 20 Mbs channels, net of any overhead, but not including any forward error correction. Forward error correction will be discussed in detail during proposal reviews and a determination made as to its necessity and value.
Premises Architecture and Network Interface
Architecture of the premises equipment includes capabilities to support program content transport, voice, data communications, Internet access, and similar applications such as video conferencing and visual site monitoring. Interface on the network side at SONET/SDH level STS1 or STS4 is preferred. All plesiochronous (PDH) service interfaces will be on the service side of the network interface equipment.
Service Interfaces include SMPTE 259, SMPTE 292, SMPTE 305, DVBASI, T1, DS3, and IEEE 10/100/1000BT in accordance with applicable standards. Suppliers are requested to provide a detailed list of applicable standards of official standards bodies such as SMPTE, IETF, ANSI, ITU, or other and relevance and applicability of each reference within the context of each standard’s use in their products and services. Figure 2 shows a functional block diagram of the general requirements. Potential suppliers are requested to include one or more block diagrams showing the next level of detail along with a matching spreadsheet for each item of equipment proposed.
Figure 2: Premises Equipment Architecture and Network Interface
The spreadsheet must include quantity, description unit price, and total price and discount applicable to each item based on total package price. Separate sheets in the file covering equipment, installation, and maintenance cost during the first and second through the fifth year of operational life are requested.
The service provider may offer network interface device equipment; however, it may not be part of an overall service contract, depending on initial and ongoing maintenance cost. Potential equipment suppliers are encouraged to quote stand-alone equipment with pricing separate from maintenance cost. Preference will be given to potential suppliers who can demonstrate successful, satisfactory business relationships with similar class customers.
Design and Installation Services
Services and material of the type required and described in this document are complex and risky. This SOW covers lifting, assembly, and installation of a passive transmission system on and at or near the top of tall tower structures. The major components of the system include a gas stop, transmission line components, hangers, an elbow complex, and an antenna. Successful completion of the work requires specialized technical knowledge and heavy lifting equipment. Preference will be given to service providers deemed in possession of these attributes:
- An established business of providing services such as contemplated
- A strong, accident-free safety record
- The continuous employment of key management and site crew personnel
- A stable financial condition with insurance adequate to cover all risks at each site
- Good relationships with tower designers and manufacturers capable of providing material and design knowledge sufficient to support modifications to existing towers, foundations, and guy cable
- An established relationship with third-party structural engineering firms, or regular employment of professional engineers licensed to do business and practice their profession in the state or states where the work will be performed